BJP

Bangladesh Journal of Pharmacology Research Article

Antibacterial activity of *Cathormion umbellatum*

A Journal of the Bangladesh Pharmacological Society (BDPS) Journal homepage: www.banglajol.info; www.bdpsjournal.org Abstracted/indexed in Academic Search Complete, Agroforestry Abstracts, Asia Journals Online, Bangladesh Journals Online, Biological Abstracts, BIOSIS Previews, CAB Abstracts, Current Abstracts, Directory of Open Access Journals, EMBASE/Excerpta Medica, Global Health, Google Scholar, HINARI (WHO), International Pharmaceutical Abstracts, Open J-gate, Science Citation Index Expanded, SCOPUS and Social Sciences Citation Index ISSN: 1991-0088

Antibacterial activity of Cathormion umbellatum

Surachai Rattanasuk¹, Rujirek Boongapim² and Tannatorn Phiwthong¹

¹Department of Science and Technology, Faculty of Liberal Arts and Science, Roi Et Rajabhat University, Selaphum, Roi Et 45120, Thailand; ²Faculty of Education, Roi Et Rajabhat University, Selaphum, Roi Et 45120, Thailand.

Article Info	Abstract
Article finoReceived:15 May 2021Accepted:12 July 2021Available Online:13 July 2021DOI: 10.3329/bjp.v16i3.53420	The aim of this study was to determine the antibacterial activity of <i>Cathormion umbellatum</i> extracts against seven antibiotic-resistant bacteria. The pods, leaves and branches of <i>C. umbellatum</i> were extracted with ethanol and methanol. The disc diffusion assay was used to screen the antibacterial activity and broth microdilution and colorimetric assay were used to measure the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. The result indicated that the highest inhibition zone (11 mm) was presented in ethanolic pods extract against multidrug resistance <i>Klebsiella pneumoniae</i> . The lowest MIC value of 0.1 mg/mL was obtained from branch extracted with ethanol against colistin resistant <i>Pseudomonas aeruginosa</i> . The lowest MBC values of 1.6 mg/mL were obtained
Rattanasuk S, Boongapim R, Phiw- thong T. Antibacterial activity of <i>Cathormion umbellatum</i> . Bangladesh J Pharmacol. 2021; 16: 91-95.	when using <i>C. umbellatum</i> leaves extracted with methanol against all test antibiotic-resistant bacteria. This is the first report presented <i>C. umbellatum</i> extracts have the potential to eliminate antibiotic-resistant bacteria in patients. These findings show the antibacterial effect of <i>C. umbellatum</i> .

Introduction

Antibiotic-resistant bacteria are a consequence of improper and/or overuse of antibiotics (Naeim et al., 2020) which as the main causes of human death worldwide in the hospital (Abadi et al., 2019). Many antibiotic groups that bacteria were resisted such as βlactams, aminoglycosides, ulfonamides, and fluoroquinolones (Huai et al., 2019). Some of the most lifethreatening antibiotic-resistant bacterial strains with severe human implications worldwide are Pseudomonas aeruginosa, Acinetobacter baumannii (Abadi et al., 2019), Klebsiella pneumonia, Escherichia coli (Gregova and Kmet, 2020), Staphylococcus aureus (MRSA) (Bhattacharya, 2014), non-typhoidal Salmonella, Mycobacterium tuberculosis (Prestinaci et al., 2015), Stenotrophomonas maltophilia (Çıkman et al., 2016), Enterococcus faecalis (Miller et al., 2014), Proteus mirabilis (Tumbarello et al., 2012), and Burkholderia pseudomallei (Bugrysheva et al., 2017). The finding for new drug sources to treat disease infected

by antibiotic-resistant bacteria is required.

Medicinal plants are rich in a numerous variety of active compounds which have as antimicrobial properties such as berberine, piperine, eugenol, alicin, catechin, curcumin, saponins, tannins, alkaloids, alkenyl phenols, glycoalkaloids, flavonoids, sesquiterpenes lactones, terpenoids, and phorbol esters (Abdallah, 2011; Khameneh et al., 2019). The quinones from Lawsonia inermis had an antimicrobial activity against P. aeruginosa (Habbal et al., 2011). Hypericin from Hypericum perforatum, had general antimicrobial properties activity against methicillin-resistant and methicillin-sensitive Staphylococcus (Bahmani et al., 2019). PLR9 isolated from endophytic fungus Aspergillus neobridgeri shows antimicrobial activity against multi-drug resistant bacteria (Sadrati et al., 2020). Tannins isolated from the Pimenta dioica leaves show antimicrobial activity against methicillin resistant S. aureus (Al-Harbi et al., 2017). The aqueous extract of

Lannea fruticosa showed the highest inhibition zone activity against both *P. aeruginosa* and *P. mirabilis* which was 20 mm and 19.5 mm, respectively (Kidane et al., 2019).

Cathormion umbellatum (Vahl) Kosterm is a flowering plant in the legume family, Fabaceae which belongs to the mimosoid clade of the subfamily Caesalpinioideae. *C. umbellatum* is Thai mimosaceous plants that contained high antioxidant activity and can be stimulated white blood cell proliferation (Tunsaringkarn et al., 2014). Only antibacterial activity of *C. umbellatum* extracted with ethanol against *E. coli* was reported (Ramli, 2010). The determination of antibacterial activity against antibiotic-resistant bacteria has still lacked. Therefore, the aim of this study was to determine the antibacterial activity of *C. umbellatum* extracts against seven antibiotic-resistant bacteria collected from the Roi Et Hospital, Thailand.

Materials and Methods

Chemicals and reagents

Ethanol and methanol were purchased from QRëCTM (New Zealand). Dimethyl sulfoxide was purchased from Sigma–Aldrich (USA). Nutrient broth and bacterial agar were purchased from HiMedia (India). Iodonitro-tetrazolium chloride was purchased from G-Biosciences (USA).

Plant materials and extraction

The fresh branch, leaves and pods of *C. umbellatum* were collected from Tha Muang Community, Tha Muang sub district, Selaphum District, Roi Et Province, Thailand. All plant samples were dried using hot air oven (POL-EKO-APARATURA company, Wodzisław Śląski, Poland) at 50°C for 48 hours before were grounded into powder. The plant powder was extracted with ethanol and methanol with shaking for 3 hours and then filtered and evaporated using a rotary vacuum evaporator (BÜCHI Labortechnik AG, Switzerland). The percent yield was calculated (Rattanasuk and Phiwthong, 2021). The plant extracts were adjusted the final concentration to 500 mg/mL using dimethyl sulfoxide.

Antibacterial activity determination

The antibacterial activity of the *C. umbellatum* extracts was tested against seven antibiotic-resistant bacteria including *A. baumannii*, *S. maltophilia*, *E. faecalis*, *B. pseudomallei*, *P. mirabilis*, multidrug resistance *K. pneumoniae*, colistin resistant *P. aeruginosa*. The active bacterial cultures were adjusted the cell concentration at OD_{600} to 0.1 before used.

The antibacterial activity of *C. umbellatum* extract was primary determined using disc diffusion assay (Boon-

gapim et al., 2021; Malaka et al., 2018). Ten microliters of each *C. umbellatum* extract (500 mg/mL) was dropped onto the center of the paper disc. The dimethyl sulfoxide was used as a negative control. The bacterial culture plates were incubated at 37°C for 24 hours. The inhibition zone formation around the paper disc indicated as antibacterial activity of *C. umbellatum* extracts were measured.

The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of C. umbellatum extracts were determined using a broth microdilution and colorimetric assay (Rattanasuk and Phiwthong, 2020). The C. umbellatum extracts which presented the inhibition zone from the previous part were 2-fold serial diluted in a 96-well plate containing NB. The 96-well bacterial culture plates were incubated at 37°C for 24 hours. The iodonitrotetrazolium chloride (4 mg/mL) solution was added into each well of the 96well bacterial culture plate and then incubated at 37°C for 1 hour. The MIC was referred to as the lowest concentration of the C. umbellatum extract that can inhibit bacterial growth. The MBC was considered as the lowest concentration of C. umbellatum extract that can eliminate the bacteria that did not produce a color change after the addition of iodonitrotetrazolium chloride (Dzotam et al., 2016).

Results

Percent yield and inhibition zone

The result of percent yield indicated that the highest percent yields at 15.9% was obtained when used the *C. umbellatum* leaves extracted with methanol, followed by pods extracted with methanol (13.3%) and leaves extracted with ethanol (11.7%), respectively. The lowest percent yields at 4.9% was found in branch extracted with ethanol.

The result of disc diffusion assay indicated that the highest inhibition zone at 11 mm was presented in ethanolic pods extract against multidrug resistance *K. pneumoniae*, followed by pods extracted with ethanol (10 mm), branch extracted with ethanol (9.5 mm) and leave extracted with methanol (9 mm) against *B. pseudomallei*, *P. mirabilis* and colistin resistant *P. aeruginosa*, respectively (Table I).

MIC and MBC values

The results indicated that the lowest MIC value of 0.1 mg/mL against colistin resistant *P. aeruginosa* was obtained from branch extracted with ethanol followed by 0.1 mg/mL was obtained from leave extracted with methanol against *P. mirabilis*, pods and leave extracted with methanol against *B. pseudomallei* (0.4 mg/mL), respectively (Table II). The lowest MBC values of 1.6 mg/mL were obtained when using *C. umbellatum* leaves

Table I								
Inhibition zone (mm)								
	Pod		Leaf		Branch			
	Ethanol	Methanol	Ethanol	Methanol	Ethanol	Methanol		
A. baumannii	7	7	6.5	7	7.5	6.6		
S. maltophilia	7.5	7.5	6.5	7	7	7.5		
E. faecalis	7	8	8	7	8.5	7		
B. pseudomallei	10	7.5	6.5	7.5	7.5	6.5		
P. mirabilis	7	8	8	8	9.5	6.5		
Multidrug resistant K. pneumoniae	11	7.5	7.5	8	8	7		
Colistin resistant P. aeruginosa	7.5	7.5	8	9	7.5	8		

Table II

Minimum inhibitory concentrations and minimal bactericidal concentration Minimum inhibitory concentrations (mg/mL) Branch Pod Leaf Ethanol Methanol Ethanol Methanol Ethanol Methanol A. baumannii 0.8 0.8 0.8 08 1.6 1.6 S. maltophilia 0.8 0.8 0.8 0.8 3.1 3.1 E. faecalis 0.8 0.8 0.2 3.1 3.1 1.6 B. pseudomallei 0.4 0.2 0.40.8 1.6 1.6 P. mirabilis 0.8 0.8 0.8 0.1 1.6 3.1 Multidrug resistant K. pneumoniae 0.8 1.6 1.6 0.8 3.1 3.1 Colistin resistant P. aeruginosa 0.11.6 1.6 0.8 0.8 1.6 Minimal bactericidal concentration (mg/mL) A. baumannii 1.6 3.1 3.1 1.6 3.1 3.1 S. maltophilia 6.3 16 1.6 16 16 6.3 E. faecalis 1.6 1.6 3.1 1.6 6.3 125B. pseudomallei 1.6 1.6 1.6 1.6 3.1 3.1 P. mirabilis 31 3.1 6.3 1.6 1.6 16 Multidrug resistant K. pneumoniae 3.1 6.3 3.1 1.6 6.3 6.3 Colistin resistant P. aeruginosa 31 31 16 16 31 31

extracted with methanol against all test antibioticresistant bacteria, leaves extracted with ethanol against *S. maltophilia, B. pseudomallei P. mirabilis* and colistin resistant *P. aeruginosa,* pods extracted with ethanol against *A. baumannii, S. maltophilia, E. faecalis* and *B. pseudomallei,* pods extracted with methanol against *S. maltophilia, E. faecalis, B. pseudomallei* and *P. mirabilis.* The highest MBC value of 12.5 mg/mL was found in branch extracted with methanol against *E. faecalis.*

Discussion

C. umbellatum shows antibacterial and antioxidant activity (Tunsaringkarn et al., 2014). It has been found that the ethanolic branch extract was presented that the lowest MIC value of 0.1 mg/mL against CoR-PA and methanolic leave extract was showed the lowest MBC values of 1.6 mg/mL against all test antibiotic-resistant bacteria. The mechanism of action is not clear.

The are no reports about that antibacterial activity C. umbellatum extract against antibiotic-resistant bacteria. Only a report about the ethanolic extract of C. umbellatum leaves has a MIC value of 0.8 mg/mL against S. aureus, B. subtilis and E. coli is presented (Ramli, 2010). The C. umbellatum extract is presented high antibiotic potential activity due to lower MIC values compared with using antibiotics (Kawamura-Sato et al., 2000) or *Lannea fruticose* (Kidane et al., 2019), Tanacetum vulgare and Bidens sulphurea extract (Chiavari -Frederico et al., 2020). The present study indicates that the MIC values of C. umbellatum pods and leave extracted with methanol against B. pseudomallei are lower than MIC values of amoxicillin-clavulanic acid (8 mg/mL), ceftazidime (8 mg/mL), imipenem (2 mg/ mL), meropenem (2 mg/mL), doxycycline (2 mg/mL), tetracycline (8 mg/mL), chloramphenicol (8 mg/mL) and trimethoprim-sulfamethoxazole (4 mg/mL) (Karatuna et al., 2020).

The MBC values of C. umbellatum extract against A.

baumannii from this research are higher than MBC of colistin (0.5 mg/L) and sulbactam (32 mg/L) (Thamlikitkul and Tiengrim, 2014). The Litsea cubeba oil exhibits a strong inhibitory effect with MBC value of 0.1% (v/v) against S. maltophilia (Zhang et al., 2020). Red honey and white honey have MBC values of 30.4-62.5% and 60.7-75% (v/v) against multidrug resistant bacteria (Wasihun and Kasa, 2016). Proanthocyanidins and flavonoids glycoside are potential phytochemical groups content of C. umbellatum extracts which act as an antibacterial reagent (Ramli, 2010). Proanthocyanidins are phytochemicals found from C. umbellatum which synthesized from tannin and are presented various biological activities including antioxidant, anticancer, antidiabetic, neuroprotective, and antimicrobial activity (Rauf et al., 2019). The proanthocyanidins of Dalbergia monetaria extracts present the antibacterial activity against methicillin sensitive S. aureus, methicillinresistant S. aureus and P. aeruginosa with MIC values of 64, 64 and 32 µg/mL, respectively (de Moura et al., 2020). The curcuminoids have an antimicrobial activity against E. faecalis with MBC of 50 µg/mL (Suttipalin et al., 2014).

Conclusion

The present study shows the antimicrobial activity of *C. umbellatum* against antibiotic-resistant bacteria.

Financial Support

This research project was supported by Roi Et Rajabhat University grant No. 2557A15062001

Conflict of Interest

Authors declare no conflict of interest

References

- Abadi ATB, Rizvanov AA, Haertlé T, Blatt NL. World Health Organization report: Current crisis of antibiotic resistance. Bio Nano Sci. 2019; 9: 778-88.
- Abdallah EM. Plants: An alternative source for antimicrobials. J Appl Pharm Sci. 2011; 1: 16-20.
- Al-Harbi R, Al-wegaisi R, Moharram F, Shaaban M, Abd El-Rahman O. Antibacterial and anti-hemolytic activity of tannins from *Pimenta dioica* against methicillin resistant *Staphylococcus aureus*. Bangladesh J Pharmacol. 2017; 12: 63-68.
- Bahmani M, Taherikalani M, Khaksarian M, Rafieian-Kopaei M, Ashrafi B, Nazer M, Soroush S, Abbasi N, Rashidipour M. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus

aureus. Future Sci. 2019; 2019.

- Bhattacharya PK. Emergence of antibiotic-resistant bacterial strains, methicillin-resistant *Staphylococcus aureus*, extended spectrum beta lactamases, and multi-drug resistance is a problem similar to global warming. Rev Soc Bras Med Trop. 2014; 47: 815-16.
- Boongapim R, Ponyaim D, Phiwthong T, Rattanasuk S. *In vitro* antibacterial activity of *Capparis sepiaria* L. against human pathogenic Bacteria. Asian J Plant Sci. 2021; 20: 102-18.
- Bugrysheva JV, Sue D, Gee JE, Elrod MG, Hoffmaster AR, Randall LB, Chirakul S, Tuanyok A, Schweizer HP, Weigel LM. Antibiotic resistance markers in *Burkholderia pseudomallei* strain Bp1651 identified by genome sequence analysis. Antimicrob Agents Chemother. 2017; 61: e00010-17.
- Chiavari-Frederico MO, Barbosa LN, Carvalho dos Santos I, Ratti da Silva G, Fernandes de Castro A, de Campos Bortolucci W, Barboza LN, Campos CFdAA, Gonçalves JE, Menetrier JV. Antimicrobial activity of Asteraceae species against bacterial pathogens isolated from postmenopausal women. PLoS One. 2020; 15: e0227023.
- Çıkman A, Parlak M, Bayram Y, Güdücüoğlu H, Berktaş M. Antibiotics resistance of *Stenotrophomonas maltophilia* strains isolated from various clinical specimens. Afr Health Sci. 2016; 16: 149-52.
- de Moura PHB, de Sousa AA, Porzel A, Wessjohann LA, Leal ICR, Martins RCC. Characterization of antibacterial proanthocyanidins of dalbergia monetaria, an Amazonian medicinal plant, by UHPLC-HRMS/MS. Planta Med. 2020; 86: 858-66.
- Dzotam JK, Touani FK, Kuete V. Antibacterial activities of the methanol extracts of *Canarium schweinfurthii* and four other Cameroonian dietary plants against multi-drug resistant Gram-negative bacteria. Saudi J Biol Sci. 2016; 23: 565-70.
- Gregova G, Kmet V. Antibiotic resistance and virulence of *Escherichia coli* strains isolated from animal rendering plant. Sci Rep. 2020; 10: 1-7.
- Habbal O, Hasson S, El-Hag A, Al-Mahrooqi Z, Al-Hashmi N, Al-Bimani Z, Al-Balushi M, Al-Jabri A. Antibacterial activity of *Lawsonia inermis* Linn (Henna) against *Pseudomonas aeruginosa*. Asian Pac J Trop Biomed. 2011; 1: 173-76.
- Huai W, Ma Q-B, Zheng J-J, Zhao Y, Zhai Q-R. Distribution and drug resistance of pathogenic bacteria in emergency patients. World J Clin Cases. 2019; 7: 3175.
- Karatuna O, Dance D, Matuschek E, Åhman J, Turner P, Hopkins J, Amornchai P, Wuthiekanun V, Cusack T-P, Baird R. Burkholderia pseudomallei multi-centre study to establish EUCAST MIC and zone diameter distributions and epidemiological cut-off values. Clin Microbiol Infect. 2021; 27: 736-41.
- Kawamura-Sato K, Iinuma Y, Hasegawa T, Horii T, Yamashino T, Ohta M. Effect of subinhibitory concentrations of macrolides on expression of flagellin in *Pseudomonas aeruginosa* and *Proteus mirabilis*. Antimicrob Agents Chemother. 2000; 44: 2869-72.
- Khameneh B, Iranshahy M, Soheili V, Bazzaz BSF. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob Resist Infect Control. 2019; 2019.

- Kidane A, Rezene A, G/Hannes O, G/Michael S, Mehreteab S, Jyoti SMJ, Andom H. Antibacterial activities of selected medicinal plants against multi-drug resistant bacteria isolated from urine samples of catheterized patients. Clin Microbiol. 2019; 2019.
- Malaka M, Yanti N, Hartati R, Sahidin I. Radical scavenging and antibacterial activity of phenolic compounds from *Anacardium occidentale* L. stem barks from South East Sulawesi-Indonesia. Indian J Pharm Sci. 2018; 80: 143-49.
- Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 2014; 12: 1221-36.
- Naeim H, El-Hawiet A, Rahman RAA, Hussein A, El Demellawy MA, Embaby AM. Antibacterial activity of *Centaurea pumilio* L. root and aerial part extracts against some multidrug resistant bacteria. BMC Complement Med Ther. 2020; 20: 1-13.
- Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015; 109: 309-18.
- Ramli S. Bioactivity evaluations and phytochemical characterizations of ethanolic extracts from selected mimosaceous plants endemic to Thailand. Chulalongkorn University. 2010.
- Rattanasuk S, Phiwthong T. Evaluation of the antibacterial activity of *Spathiphyllum wallisii* extracts against human pathogenic bacteria. Pakistan J Biol Sci. 2020; 23: 1436-41.
- Rattanasuk S, Phiwthong T. A New potential source of antipathogenic bacterial substances from *Zamioculcas zamiifolia* (Lodd.) Engl. extracts. Pakistan J Biol Sci. 2021; 24: 235-40.
- Rauf A, Imran M, Abu-Izneid T, Iahtisham Ul H, Patel S, Pan

X, Naz S, Sanches Silva A, Saeed F, Rasul Suleria HA. Proanthocyanidins: A comprehensive review. Biomed Pharmacother. 2019; 116: 108999.

- Sadrati N, Zerroug A, Demirel R, Bakli S, Harzallah D. Antimicrobial activity of secondary metabolites produced by *Aspergillus neobridgeri* isolated from *Pistacia lentiscus* against multi-drug resistant bacteria. Bangladesh J Pharmacol. 2020; 15: 82-85.
- Suttipalin S, Suttimas Y, Nirascha C. Effect of purified curcuminoids on *Enterococcus faecalis* and its biofilm. Int J Clin Prev Dent. 2014; 10: 71-78.
- Thamlikitkul V, Tiengrim S. *In vitro* activity of colistin plus sulbactam against extensive-drug-resistant *Acinetobacter baumannii* by checkerboard method. J Med Assoc Thai. 2014; 97: S1-S6.
- Tumbarello M, Trecarichi EM, Fiori B, Losito AR, D'Inzeo T, Campana L, Ruggeri A, Di Meco E, Liberto E, Fadda G. Multidrug-resistant *Proteus mirabilis* bloodstream infections: Risk factors and outcomes. Antimicrob Agents Chemother. 2012; 56: 3224-31.
- Tunsaringkarn T, Suwansaksri J, Rungsiyothin A, Palasuwan A. Cell proliferation activities *in vitro* model of Thai mimosaceous extracts. J Chem Pharm Res. 2014; 6: 507-11.
- Wasihun AG, Kasa BG. Evaluation of antibacterial activity of honey against multidrug resistant bacteria in Ayder Referral and Teaching Hospital, Northern Ethiopia. Springer Plus. 2016; 5: 1-8.
- Zhang Y, Wei J, Chen H, Song Z, Guo H, Yuan Y, Yue T. Antibacterial activity of essential oils against *Stenotro-phomonas maltophilia* and the effect of citral on cell membrane. LWT. 2020; 117: 108667.

Author Info Surachai Rattanasuk (Principal contact) e-mail: surachai_med@hotmail.com