Chemical and bioactive diversities of marine sponge Neopetrosia

  • Haitham Qaralleh Department of Medical Support, Al-Balqa Applied University, Al-Karak University College, Al-Karak, Jordan.
Keywords: Bioactivity, Marine sponge, Neopetrosia
DOI: 10.3329/bjp.v11i2.26611

Abstract

The marine sponge Neopetrosia contains about 27 species that is highly distributed in Indian Ocean, Atlantic Ocean (Caribbean Sea) and Pacific Ocean. It has proven to be valuable to the discovery of medicinal products due to the presence of various types of compounds with variable bioactivities. More than 85 compounds including alkaloids, quinones, sterols and terpenoids were isolated from this genus. Moreover, the crude extracts and the isolated compounds revealed activities such as antimicrobial, anti-fouling, anti-HIV, cytotoxic, antitumor, antioxidant, antiprotozoal, anti-inflammatory. Because only 9 out of 27 species of the genus Neopetrosia have been chemically studied thus far, there are significant opportunities to find out new chemical constituents from this genus.

References

Abdillah S, Nurhayati APD, Nurhatika S, Setiawan E, Heffen WL. Cytotoxic and antioxidant activities of marine sponge diversity at Pecaron Bay Pasir Putih Situbondo East Java, Indonesia. J Pharm Res. 2013a; 6: 685-89.

Abdillah S, Wahida Ahmad R, Kamal Muzaki F, Mohd Noor N. Antimalarial activity of Neopetrosia exigua extract in mice. J Pharm Res. 2013b; 6: 799-803.

Alvi KA, Rodriguez J, Diaz MC, Moretti R, Wilhelm RS, Lee RH, Slate DL, et al. Proteintyrosine kinase inhibitory properties of planar polycyclics obtained from the marine sponge Xestospongia Cf Carbonaria and from total synthesis. J Org Chem. 1993; 58: 4871-80.

Andersen RJ, Northcote PT. Xestenone, a new bicyclic C19 terpenoid from the marine sponge Xestospongia vanilla. Tetrahedron Lett. 1988; 29: 4357–60.

Brastianos HC, Vottero E, Patrick BO, Van Soest R, Matainaho T, Mauk AG, Andersen RJ. Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J Am Chem Soc. 2006; 128: 16046-47.

Cerqueira F, Watanadilok R, Sonchaeng P, Kijjoa A, Pinto M, Van Ufford HQ, Kroes B, et al. Clionasterol: A potent inhibitor of complement component C1. Planta Medica. 2003; 69: 174-76.

Clement JA, Kitagaki J, Yang Y, Saucedo CJ, OʼKeefe BR, Weissman AM, McKee TC, et al. Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53. Bioorg Med Chem. 2008; 16: 10022-28.

Concepción GP, Foderaro TA, Eldredge GS, Lobkovsky E, Clardy J, Barrows LR, Ireland CM. Topoisomerase II-mediated DNA cleavage by adocia and xestoquinones from the Philippine sponge Xestospongia sp. J Med Chem. 1995; 38: 4503-07.

Das B, Rao SP, Srinivas K. Studies on marine chemicals, Part VI.A new clionasterol derivative from the marine sponge Spirastrella inconstans. J Nat Prod. 1993; 56: 2210–11.

De Smet P, Parys JB, Callewaert G, Weidema AF, Hill E, De Smedt H, Erneux C, et al. Xestospongin C is an equally potent inhibitor of the inositol 1, 4, 5-trisphosphate receptor and the endoplasmic-reticulum Ca2+ pumps. Cell Calcium. 1999; 26: 9-13.

Dube A, Singh N, Saxena A, Lakshmi V. Antileishmanial potential of a marine sponge, Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitol Res. 2007; 101: 317-24.

Dzeha T, Jaspars M, Tabudravu J. Clionasterol, a triterpenoid from the Kenyan marine green macroalga Halimeda macroloba. Western Indian Ocean J Mar Sci. 2004; 2: 157-61.

Eder C, Schupp P, Proksch P, Wray V, Steube K, Müller CE, Frobenius W. et al. Bioactive pyridoacridine alkaloids from the micronesian sponge Oceanapia sp. J Nat Prod. 1998; 61: 301-05.

Franco LA, Macareno JL, Ocampo YC, Pájaro IP, Gaitán R. Marine sponges of the genus Neopetrosia with anti-inflammatory activity. Latin American J Pharm. 2012; 31: 976-83

Fujiwara H, Matsunaga K, Saito M, Hagiya S, Furukawa K, Nakamura H, Ohizumi Y. Halenaquinone, a novel phosphatidylinositol 3-kinase inhibitor from a marine sponge, induces apoptosis in PC12 cells. Eur J Pharmacol. 2001; 413: 37-45.

Gafni J, Munsch JA, Lam TH, Catlin MC, Costa LG, Molinski TF, Pessah IN. Xestospongins: Potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 1997; 19: 723-33.

Galeano E, Martínez A. Antimicrobial activity of marine sponges from Urabá Gulf, Colombian Caribbean region. J de Mycologie Medi. 2007; 17: 21-24.

Garson MJ, Thompson JE, Larsen RM, Battershill CN, Murphy PT, Bergquist PR. Terpenes in sponge cell membranes: Cell separation and membrane fractionation studies with the tropical marine sponge Amphimedon sp. Lipids 1992; 27: 378–88.

Gorshkova IA, Gorshkov BA, Fedoreev SA, Shestak OP, Novikov VL, Stonik VA. Inhibition of membrane transport ATPases by halenaquinol, a natural cardioactive pentacyclic hydroquinone from the sponge Petrosia seriata. Comp Biochem Physiol. Part C, Pharmacol Toxicol Endocrinol. 1999; 122: 93-9.

Gorshkova IA, Gorshkov BA, Fedoreev SA, Stonik VA. Halenaquinol, a natural cardioactive pentacyclic hydroquinone, interacts with sulfhydryls on rat brain Na(+), K(+)-ATPase. Comp Biochem Physiol. CBP. 2001; 128: 531-40.

Hooper JNA, Kennedy JA, Soest RWM. Annotated checklist of sponges (Porifera) of the South China Sea region. The Raffles Bulletin of Zoology. 2000; Supplement: 125-207.

Iwagawa T, Nakamura K, Hirose T, Okamura H, Nakatani M. New xenicane diterpenes isolated from the acetone extract of the soft coral Xenia florida. J Nat Prod. 2000; 63: 468-72.

Kobayashi M, Hayashi K, Kawazoe K, Kitagawa I. Marine natural-products 29. Heterosigma-glycolipid-I, heterosigma-glycolipid-Ii, heterosigma-glycolipid-Iii, andheterosigma-glycolipid-Iv, 4 diacylglyceroglycolipids possessing omega-3-polyunsaturated fatty-acid residues, from the raphidophycean dinoflagell. Chem Pharmaceut Bull. 1992; 40: 1404-10.

Kobayashi M, Kawazoe K, Kitagawa, I. Araguspongines B, C, D, E, F, G, H, and J, new vasodilative bis-1-oxaquinolizidine alkaloids from an Okinawan marine sponge, Xestospongia sp. Chem Pharm Bull. 1989; 37: 1676-78.

Kobayashi M, Shimizu N, Kitagawa I, Kyogoku Y, Harada N, Uda H. Absolute stereostructures of halenaquinol and halenaquinol sulfate, pentacyclic hydroquinones from the Okinawan marine sponge Xestospongia sapra, as determined by theoretical calculation of CD spectra. Tetrahedron Lett. 1985; 26: 3833-36.

Kong F, Andersen RJ. Ingenamine alkaloids isolated from the sponge Xestospongia ingens: Structures and absolute configurations. Tetrahedron 1995; 51: 2895-906.

Kubota T, Kon Y, Kobayashi J. Xestosaprol C, a new pentacyclic hydroquinone sulfate from a marine sponge Xestospongia sapra. Heterocycles 2008; 76: 1571-75.

Lakshmi V, Mishra S, Srivastava S, Chaturvedi A, Srivastava M, Shukla P. Antifungal activity of marine sponge Haliclona exigua (Krikpatrick). J de Mycologie Médicale/J Med Mycol. 2010; 20: 31-35.

Laport MS, Santos OCS, Muricy G. Marine sponges: Potential sources of new antimicrobial drugs. Curr Pharm Biotechnol. 2009; 10: 86-105.

Leone PDA, Carroll AR, Towerzey L, King G, McArdle BM, Kern G, Fisher S, et al. Exiguaquinol: A novel pentacyclic hydroquinone from Neopetrosia exigua that inhibits Helicobacter pylori Murl. Org Lett. 2008; 10: 2585-88.

Li Y, Qin S, Guo YW, Gu YC, Soest RW. 9ʼ-Epi-3beta, 3'beta-dimethylxestospongin C, a new macrocyclic diamine alkaloid from the Hainan sponge Neopetrosia exigua. Planta Med. 2011; 77: 179-81.

Limna Mol VP, Raveendran TV, Abhilash KR, Parameswaran PS. Inhibitory effect of Indian sponge extracts on bacterial strains and larval settlement of the barnacle, Balanus amphitrite. Int Biodeter Biodegr. 2010; 64: 506-10.

Limna Mol VP, Raveendran TV, Parameswaran PS. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int Biodeter Biodegr. 2009; 63: 67-72.

Lindquist N, Barber PH, Weisz JB. Episymbiotic microbes as food and defence for marine isopods: Unique symbioses in a hostile environment. Proceedings. Biological Sciences / The Royal Society. 2005; 272: 1209-16.

Liu H, Mishima Y, Fujiwara T, Nagai H, Kitazawa A, Mine Y, Kobayashi H, et al. Isolation of araguspongine M, a new stereoisomer of an araguspongine/xestospongin alkaloid, and dopamine from the marine sponge Neopetrosia exigua collected in Palau. Mar Drugs. 2004; 2: 154-63.

Majali I, Qaralleh H, Idid S, Saad S, Susanti D, Althunibat O. Potential antimicrobial activity of marine sponge Neopetrosia exigua. J Basic Appl Res. 2015; 1: 1-13

Mayer AMS, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2009-2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, anti-tuberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms. Mar Drugs. 2013; 11: 2510.

Mora JA, Newmark F, Santos-Acevedo M, Sánchez J. Evaluation of marine sponge extracts as new sources of antimicrobial substances. Revista española de quimioterapia: Publicacion oficial de la Sociedad Española de Quimioterapia. 2008; 21: 174-79.

Mora-Cristancho JA, Arévalo-Ferro C, Ramos FA, Tello E, Duque C, Lhullier C, Falkenberg M, et al. Antifouling activities against colonizer marine bacteria of extracts from marine invertebrates collected in the Colombian Caribbean Sea and on the Brazilian coast (Santa Catarina). Zeitschrift für Naturforschung. 2011; 66: 515-26.

Morinaka BI, Molinski TF. Xestoproxamines A-C from Neopetrosia proxima: Assignment of absolute stereo structure of bis-piperidine alkaloids by integrated degradation-CD analysis. J Nat Prod. 2011; 74: 430-40.

Morris SA, Northcote PT, Andersen RJ. Triterpenoid glycosides from the Northeastern pacific marine sponge Xestospongia-vanilla. Can J Chem. 1991; 69: 1352-64.

Nakagawa M, Endo M, Tanaka N, Gen-Pei L. Structures of xestospongin A, B, C and D, novel vasodilative compounds from marine sponge, Xestospongia exigua. Tetrahedron Lett. 1984; 25: 3227-30.

Nakamura H, Kobayashi J, Kobayashi M, Ohizumi Y, Hirata Y. Xestoquinone, a novel cardiotonic marine natural product isolated from the okinawan sea sponge Xestospongia sapra. Chem Lett. 1985; 6: 713-16.

Nakao Y, Shiroiwa T, Murayama S, Matsunaga S, Goto Y, Matsumoto Y, Fusetani N. Identification of renieramycin A as an antileishmanial substance in a marine sponge Neopetrosia sp. Mar Drugs. 2004; 2: 55-62.

Northcote PT, Andersen RJ. Xestolide and secoxestenone, degraded triterpenoids from the sponge Xestospongia vanilla. Can J Chem. 1989; 67: 1359.

Northcote PT, Andersen RJ. Xestodiol, a new apocarotenoid from the sponge Xestospongia vanilla. J Nat Prod. 1987; 50: 1174-77.

Nukoolkarn VS, Saenoon S, Rungrotmongkol T, Hannongbua S, Ingkaninan K, Suwanborirux K. Petrosamine, a potent anticholinesterase pyridoacridine alkaloid from a Thai marine sponge Petrosia n. sp. Bioorg Med Chem. 2008; 16: 6560-67.

Oku N, Matsunaga S, Soest RWM, Fusetani N. Renieramycin J, a highly cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp. J Nat Prod. 2003; 66: 1136-39.

Orabi KY, El Sayed KA, Hamann MT, Dunbar DC, Al-Said MS, Higa T, Kelly M. Araguspongines K and L, new bioactive bis-1-oxaquinolizidine N-oxide alkaloids from Red Sea specimens of Xestospongia exigua. J Nat Prod. 2002; 65: 1782-85.

Proksch P, Edrada RA, Ebel R. Applied microbiology and Biotechnology. Drugs from the seas current status and microbiological implications. Vol. 59. Springer Verlag, 2002, p 125.

Qaralleh H, Idid S, Saad S, Susanti D, Mustafa B. Documentation of three sponge species belong to the family of Petrosiidae. Aust J Basic Appl Sci. 2011; 5: 1047-53.

Qaralleh H, Idid S, Saad S, Susanti D, Taher M, Khleifat K. Antifungal and antibacterial activities of four Malaysian sponge species (Petrosiidae). Journal de Mycologie Médicale / J Med Mycol. 2010; 20: 315-20.

Quirion JC, Sevenet T, Husson HP, Weniger B. Debitus C. Two new alkaloids from Xestospongia sp., a new Caledonian sponge. J Nat Prod. 1992; 55: 1505.

Ramesh P, Reddy NS, Rao TP, Venkateswarlu Y. New oxygenated africanenes from the soft coral Sinularia dissecta. J Nat Prod. 1999; 62: 1019-21.

Roll DM, Scheuer PJ, Matsumoto GK, Clardy J. Halenaquinone, A pentacyclic polyketide from a marine sponge. J Am Chem Soc. 1983; 105: 6177-78.

Roskelley CD, Williams DE, McHardy LM, Leong KG, Troussard A, Karsan A, Andersen RJ, et al. Inhibition of tumor cell invasion and angiogenesis by motuporamines. Cancer Res. 2001; 61: 6788-94.

Schmitz FJ, Bloor SJ. Xesto- and halenaquinone derivatives from a sponge, Adocia sp., from Truk lagoon. J Org Chem. 1988; 53: 3922–25.

Sorek H, Rudi A, Benayahu Y, Kashman Y. Njaoamines G and H, two new cytotoxic polycyclic alkaloids and a tetrahydroquinolone from the marine sponge Neopetrosia sp. Tetrahedron Lett. 2007; 48: 7691-94.

Sperry S, Crews P. Dihydrotubastrines: Phenethylguanidine analogues from the Indo-Pacific marine sponge Petrosia cf. contignata. J Nat Prod. 1998; 61: 859-61.

Takekawa Y, Matsunaga S, Soest RWM, Fusetani N. Amphimedosides, 3-alkylpyridine glycosides from a marine sponge Amphimedon sp. J Nat Prod. 2006; 69: 1503-05.

Torres YR, Bugni TS, Berlinck RGS, Ireland CM, Magalhães A, Ferreira AG, Da Rocha RM. Sebastianines A and B, novel biologically active pyridoacridine alkaloids from the Brazilian ascidian cystodytes dellechiajei. J Org Chem. 2002; 67: 5429-32.

Towle KM, Chaytor JL, Liu H, Austin P, Roberge M, Roskelley CD, Vederas JC. Synthesis and biological studies of neopetrosiamides as inhibitors of cancer cell invasion. Org Biomolecular Chem. 2013; 11: 1476-81.

Tsukamoto S, Takeuchi T, Kawabata T, Kato H, Yamakuma M, Matsuo K, El-Desoky AH, et al. Halenaquinone inhibits RANKL-induced osteoclastogenesis. Bioorg Med Chem Lett. 2014; 24: 5315-17.

Venkateshwar Goud T, Srinivasa Reddy N, Raghavendra Swamy N, Siva Ram T, Venkateswarlu Y. Anti-HIV active petrosins from the marine sponge Petrosia similis. Biol Pharma Bull. 2003; 26: 1498-501.

Venkateswara Rao J, Desaiah D, Vig PJS, Venkateswarlu Y. Marine biomolecules inhibit rat brain nitric oxide synthase activity. Toxicology 1998; 129: 103-12.

Venkateswarlu Y, Farooq Biabani MA, Venkat Rami Reddy M. A new sesquiterpene from the Andaman sponge dysidea herbacia. J Nat Prod. 1994; 57: 827-28.

Wei X, Nieves K, Rodríguez AD. Neopetrosiamine A, biologically active bis-piperidine alkaloid from the Caribbean sea sponge Neopetrosia proxima. Bioorg Med Chem Lett. 2010; 20: 5905-08.

Williams DE, Austin P, Diaz-Marrero AR, Soest RV, Matainaho T, Roskelley CD, Roberge M, et al. Neopetrosiamides, peptides from the marine sponge Neopetrosia sp. that inhibit amoeboid invasion by human tumor cells. Org Lett. 2005; 7: 4173-76.

Williams DE, Craig KS, Patrick B, McHardy LM, Van Soest R, Roberge M, Andersen RJ. Motuporamines, anti-invasion and anti-angiogenic alkaloids from the marine sponge Xestospongia exigua (Kirkpatrick): Isolation, structure elucidation, analogue synthesis, and conformational analysis. J Org Chem. 2002; 67: 245-58.

Williams DE, Lassota P, Andersen RJ. Motuporamines A-C, cytotoxic alkaloids isolated from the marine sponge Xestospongia exigua (kirkpatrick). J Org Chem. 1998; 63: 4838-41.

Winder PL, Baker HL, Linley P, Guzmán EA, Pomponi SA, Diaz MC, Reed JK, et al. Neopetrosiquinones A and B, sesquiterpene benzoquinones isolated from the deep-water sponge Neopetrosia cf. proxima. Bioorg Med Chem. 2011; 19: 6599-603.

Zhou XF, Xu T, Yang XW, Huang R, Yang B, Tang L, Liu Y. Chemical and biological aspects of marine sponges of the genus Xestospongia. Chem Biodiver. 2010; 7: 2201-27.

Zhu Y, Yoshida WY, Kelly-Borges M, et al. Noelaquinone, a new hexacyclic triazine quinone from an Indonesian Xestospongia sp. [J]. Heterocycles 1998; 49: 355-60.

Published
2016-04-03

Apply citation style format of Bangladesh Journal of Pharmacology

Section
Mini Review
Financial Support
Self-funded
Conflict of Interest
Authors declare no conflict of interest