Exopolysaccharide and lactic acid bacteria: Perception, functionality and prospects
Abstract
Lactic acid bacteria exhibit the most effective potential to divert significant amount of fermentable sugars towards the biosynthesis of functional exopolysaccharide. Exopolysaccharides from lactic acid bacteria are receiving a renewed interest due to the claims of human health benefits. This review provides an update on multiple uses and production of exopolysaccharides with major emphasis on their chemical properties, characterization, and some other molecular strategies adopted for their genetics and biological tailoring to better understand the process of exopolysaccharide production along with their antiviral efficacy with multiple modes of action. Additionally, microbiological, biochemical, nutritional and biotechnological aspects of exopolysaccharide production have also been discussed. Moreover, appropriate suggestions have been made on lactic acid bacteria improvements, leading to enhanced production with advanced modification and production process that may contribute to the economic soundness of applications in food and pharmacological industries with this promising group of biomolecules.
References
Badel S, Bernardi T, Michaud P. New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv. 2011; 29: 54-66.
Bae JW, Kim JJ, Jeon CO, Kim K, Song JJ, Lee SG, Poo HY, Jung CM, Park YH, Sung MH. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J Microbiol Biotechnol. 2003; 13: 1008-12.
Bae JW, Rhee SK, Park JR, Kim KH, Kim BC, Park YH. Monitoring population dynamics of Lactic acid bacteria during fermentation of Kimchi, a Korean traditional fermented vegetable, using community genome microarray. Appl Environ Microbiol. 2005; 71: 8825-35.
Banas JA, Vickerman MM. Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med. 2003; 14: 89-99.
Becker A, Vorholter FJ. Xanthan Biosynthesis by Xanthomonas Bacteria: An overview of the current biochemical and genomic data. In: Microbial production of biopolymers and polymer precursors, Norfolk, Caister Academic Press, 2009, pp 1-12.
Bello FD, Walter J, Hertel C, Hammes WP. In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol. 2001; 24: 232-37.
Bendiak B. An effective strategy for structural elucidation of oligosaccharides through NMR spectroscopy combined with peracetylation using doubly 13 C-labeled acetyl groups. Can J Chem. 80: 2002; 1032-38.
Bollen LJM, Kelly B, Kilmarx PH, Supaporn C, Cathy C, Punneporn W, Nucharee S, Jullapong A, Jordan WT, Janet MM. No increase in cervicovaginal proinflammatory cytokines after carraguard use in a placebo-controlled randomized clinical trial. J Acquir Immune Defic Synd. 2008; 47: 253-57.
Bouhlal R, Haslin C, Chermann JC, Colliec-Jouault S, Sinquin C, Simon G, Cerantola S, Riadi H, Bourgougnon N. Antiviral activities of sulfated polysaccharides isolated from Sphaerococcuscoronopifolius (Rhodophyta, Gigartinales) and Boergeseniellathuyoides (Rhodophyta, Ceramiales). Mar Drugs 2011; 9: 1187-09.
Brache V, Horacio C, R´egine SW, Robin AM, Juan CM, Kumar N, Salvatierra AM, Tejada AS, Cochon C, Forcelledo ML. Effect of a single vaginal administration of levonorgestrel in Carraguard® gel on the ovulatory process: A potential candidate for dual protection emergency contraception. Contraception 2007; 76: 111-16.
Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: A review. J Dairy Sci. 2003; 86: 407-23.
Buchholz K, Seibel J. Industrial carbohydrate biotransformations. Carbohydr Res. 2008; 343: 1966-79.
Cerning J, Bouillanne C, Landon M, Desmazeaud M. Isolation and characterization of excellular polysaccharides from slime-forming mesophilic lactic acid bacteria. J Dairy Sci. 1992; 75: 692-99.
Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Lett. 1990; 87: 113-30.
Cote GL, Robyt FJ. Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRl B-1355 that synthesizes an alternating (1→6), (1→3)-α-D-glucan. Carbohydr Res. 1982; 101: 57-74.
de Roos NM, Katan MB. Effects of probiotic bacteria on diarrhoea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am J Clin Nutr. 2000; 71: 405-11.
De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds.). In: Bergey’s manual of systematic bacteriology. 2nd ed. Volume 3. New York, Springer, 2009.
de Vuyst L, de Vin F, Vaningelgem F, Degeest B. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J. 2001; 11: 687-707.
deVuyst LD, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev. 1999; 23: 153-77.
Donota F, Fontanaa A, Baccoua JC, Schorr-Galindo S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohyd Polym. 2012; 87: 951-62.
Duus JO, Gotfredsen CH, Bock K. Carbohydrate structural determination by NMR spectroscopy: Modern methods and limitations. Chem Rev. 2000; 100: 4589-614.
Eo SK, Kim YS, Lee CK, Han SS.Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J Ethnopharmacol. 2000; 72: 475-81.
Feldmane J, Semjonovs P, Ciprovica I. Potential of exopoly-saccharides in youghurt production. Int J Biol Food Vet Agric Eng. 2013; 7: 424-27.
Figueroa C, Davila AM, Pourquie J. Lactic acid bacteria of the sour cassava starch fermentation. Lett Appl Microbiol. 1995; 21: 126-30.
Frengova GI, Simova ED, Beshkova DM, Simova ZI. Exopolysaccharides produced by lactic acid bacteria of kefir grains. App Microbiol. 2002; 45: 805-10.
Ganzle M, Michael G, Schwab C. Exopolysaccharide production by intestinal lactobacilli. In: Probiotics and prebiotics: Scientific aspects. Tannock GW (eds.). Norfolk, Caister Academic Press, 2005, pp 83-96.
Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: From structure–activity analysis to clinical evaluation. Glycobiol. 2009; 19: 2-15.
Gibson GR, Rastall RA. Gastrointestinal infections and the protective role of probiotics and prebiotics. Food Sci Technol. 2003; 23: 76-82.
Górska-Frączek S, Sandström C, Kenne L, Paściak M, Brzozowska E, Strus M, Heczko P, Gamian A.The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151. Carbohydr Res. 2013; 28: 148-53.
Gorska S, Jachyrnek W, Rybka J, Strus M, Heczko PB, Gamian A. Structural and immunochemical studies of neutral exopolysaccharide produced by Lactobacillus johnsoni 142. Carbohydr Res. 2010; 345: 108-14.
Gruter M, Leeflang BR, Kuiper J, Kamerling JP, Vligenthart JFG. Structural characterization of the exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricusrr grown in skimmed milk. Carbohyd Res. 1993; 239: 209-26.
Habibi N, Soleimanian S, Sheikhzeinoddin M. Exopoly-saccharides produced by pure culture of Lactobacillus, Lactococcus and yeast isolated from Kefir grain by microtiter plate assay: Optimization and comparison. World Appl Sci J. 2011; 12: 742-50.
Harutoshi T. Exopolysaccharides of lactic acid cacteria for food and colon health applications. Biochemistry, genetics and molecular biology. In: Lactic acid bacteria: R and D for food, health and livestock purposes. Kongo M (ed). 2013, pp 222-38.
Hay ID, Rehman ZU, Ghafoor A, Rehm BHA. Bacterial biosynthesis of alginates. J Chem Technol Biotechnol. 2010; 85: 752-759.
Jolly L, Stingele F. Molecular organization and functionality of exopolysaccharide gene clusters. Int Dairy J. 2001; 11: 733-45.
Jolly L, Vincent SJ, Duboc P, Neeser JR. Exploiting exoployssacharides from lactic acid bacteria. Ant van Leeuwen. 2002; 82: 367-74.
Kang SA, Jang KH, Seo JW, Kim KH, Kim YH, Rairakhwada D. Levan: Applications and Perspectives. In: Microbial Production of Biopolymers and Polymer Precursors, Caister Academic Press, Norfolk 2009; pp 145-62.
Kanmani P, Yuvaraj N, Paari KA, Pattukumar V, Arul V. Productionand purification of a novel exopolysaccharide from lactic acid bacteriumStreptococcus phocae PI80 and its functional characteristics activity in vitro. Biores Technol. 2011; 102: 4827-33.
Kassaa AI, Hober D, Hamze M, Chihib NE, Drider D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiot Antimicrob Prot. 2014; 6: 177-85.
Kawase M, He F, Kubota A. Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett App Microbiol. 2010; 51: 6-10.
Kilmarx PH, Kelly B, Supaporn C. A randomized, placebo-controlled trial to assess the safety and acceptability of use of carraguard vaginal gel by heterosexual couples in Thailand. Sex Trans Dis. 2008; 35: 226-32.
Kim CJ, Yoon SK, Kim HI, Park YH, Oh HM. Effect of Spirulina platensis and probiotics as feed additives on growth of shrimp Fenneropenaeus chinensis. J Microbiol Biotechnol. 2006; 16: 1248-54.
Kim HG, Gim MG, Kim JY, Hwang HJ, Ham MS, Lee JM, Hartung T, Park JW, Han SH, Chung DK. Lipoteichoic acid from Lactobacillus plantarum elicits both the production of interleukin-23p19 and suppression of pathogen-mediated interleukin-10 in THP-1 cells. FEMS Immunol Med Microbiol. 2007; 49: 205-14.
Kim JD, Yoon JH, Park YH, Lee DW, Lee KS, Choi CH, Park WY, Kang KH. Isolation and identification of a lactic acid bacterial strain KJ-108 and its capability for deodorizing malodorous gases under anaerobic culture conditions. J Microbiol Biotechnol. 2003; 13: 207-16.
Kim JY, Park BK, Park HJ, Park YH, Kim BO, Pyo S. Atopic dermatitis-mitigate effects of new Lactobacillus sakei Probio 65 isolated from Kimchi. J Appl Microbiol. 2013a; 115: 517-26.
Kim PI, Jung MY, Chang YH, Kim SH, Kim SJ, YH Park. Probiotic properties of Lactobacillus and Bifidobaterium strains isolated from porcine gastrointestinal tract. Appl Microbiol Biotechnol. 2007; 72: 1103-11.
Kitazawa H, Ishii Y, Uemura J, Kawai Y, Saito T, Kaneko T, Itoh T. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii subsp bulgaricus. Food Microbiol. 2000; 17: 109-18.
Klasse PJ, Shattock R, Moore JP. Antiretorviral drug-based microbicides to prevent HIV-1 sexual transmission. Annu Rev Med. 2008; 59: 455-71.
Kleerebezem M, van Kranenburg R, Tuinier R, Boels IC, Zoon P, Looijesteijn E, Hugenholtz J, de Vos WM. Exopolysaccharides produced by Lactococcus lactis: From genetic engineering to improved rheological properties? Ant Van Leeuwen. 1999; 76: 357-65.
Kodali VP, Das S, Sen R. An exopolysaccharide from a probiotic: Biosynthesis 427 dynamics, composition and emulsifying activity. Food Res Int. 2009; 42: 695-99.
Koh SK, Lee JE, Kim HW, Kim SS, Park YK, Park YH, Park YH, Koh KH. Identification and deacidification of lactic acid bacteria in Korean red wine. Food Sci Biotechnol. 2004; 13: 96-99.
Korakli M, Ganzle MG, Vogel RF. Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol. 2002; 92: 958-65.
Kralj S, Stripling E, Sanders P, van Geel-Schutten GH, Dijkhuizen L. Highly hydrolytic reuteransucrase from probiotic Lactobacillus reuteri strain ATCC 55730. Appl Environ Microbiol. 2005; 71: 3942-50.
Kumar AS, Mody K. Microbial exopolysaccharides: Variety and potential applications. In: Microbial production of biopolymers and polymer precursors. Norfolk, Caister Academic Press, 2009, pp 229-54.
Kumar VJR, Seo BJ, Mun MR, Kim CJ, Lee I, Kim H, Park YH. Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim Health Prod. 2010; 42: 1855-60.
Lamothe GT, Jolly L, Mollet B, Singele F. Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol. 2002; 178: 218-28.
Landersjo C, Yang Z, Huttunen E, Widmalm G. (Eds)Book of Abstracts: First International Symposium on Lactic Acid Bacteria. 1st ed: Brussels 2001.
Lange-Starke A, Petereit A, Truyen U, Braun PG, Fehlhaber K, Albert T. Antiviral potential of selected starter cultures, bacteriocins and D-L-lactic acid. Food Eniviron Virol. 2014; 6: 42-47.
Law A, Gu Y, Marshall V. Biosynthesis, characterization, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv. 2001; 19: 597-625.
Le Costaouec T, Cerantola S, Ropartz D, Ratiskoi J, Sinquin C, Colliec-Jouault S, Boisset C. Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonasmacieodii strain. Carbohyd Polym. 2012; 90: 49-59.
Leeflang BR, Faber EJ, Erbel P, Vliegenthart JFG. Structure elucidation of glycoprotein glycans and of polysaccharides by NMR spectroscopy. J Biotechnol. 2000; 77: 115-22.
Lehtoranta L. Probiotics and virus infections: The effects of Lactobacillus rhamnosus GG on respiratory and gastrointestinal virus infections. Academic Dissertation, Institute of Biomedicine, University of Helsinki, Helsinki, Finland, 2012.
Leo F, Hashida S, Kumagai D, Uchida K, Motoshima H, Arai I, Asakuma S, Fukuda K, Urashima T. Studies on a neutral exopolysaccharide of Lactobacillus fermentum TDS030603. J Appl Glycosci. 2007; 54: 223-29.
Liang TW, Wang SL. Recent advances in exopolysaccharides from Paenibacillus spp.: production, isolation, structure, and bioactivities. Mar Drugs 2015; 13: 1847-63.
Li JY, Jin MM, Meng J, Gao SM, Lu RR. Exopolysaccharide from Lactobacillus plantarum LP6: Antioxidation and the effect on oxidative stress. Carbohydr Polym. 2013; 98: 1147-52.
Liu J, Yang F, Ye LB, Yang XJ, Timani KA, Zheng Y, Wang YH. Possible mode of action of antiherpetic activities of a proteoglycan isolated from the mycelia of Ganoderma lucidum in vitro. J Ethnopharmacol. 2004; 95: 265-72.
Li YG, Ji DF, Zhong S, Lv ZQ, Lin TB, Chen S, Hu GY. Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. J Ethnopharmacol. 2011; 134: 961-70.
Lynch KM, McSweeney PLH, Arendt EK, Uniacke-Lowe T, GalleS, Coffey A. Isolation and characterisation of exopoly-saccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. Int Dairy J. 2014; 34: 125-34.
Madhuri KV, Prabhakar V. Microbial exopolysaccharides: Biosynthesis and potential applications. Oriental J Chem 2014; 30: 1401-10.
Maeda H, Zhu X, Omura K, Suzuki S, Kitamura S. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofact 2004; 22: 197-200.
Makino S, Ikegami S, Kano H, Sashihara T, Sugano H, Horiuchi H. Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. J Dairy Sci. 2006; 89: 2873-81.
Makino S, Ikegami S, Kume A, Horiuchi H, Sasaki H, Orii N. Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1. Br J Nutr. 2010; 104: 998-1006.
Malcom RK, Woolfson AD, Toner CF, Morrow RJ, McCullagh SD. Longterm, controlled release of the HIV microbicide TMC120 from silicone elastomer vaginal rings. J Antimicrob Chemother. 2005; 56: 954-56.
Martensson O, Oste R, Holst O. Lactic acid bacteria in an oatbased non-dairy milk substitute: Fermentation characteristics and exopolysaccharide formation. Lebensm-Wiss Technol. 2000; 33: 525-30.
Mayo B, Aleksandrzak-Piekarczyk T, Fernandez M, Kowalczyk M, Alvarez-Martin P, Bardowski J. Updates in the metabolism of lactic acid bacteria. In: Biotechnology of Lactic Acid Bacteria. Mozzi F, Raya RR, Vignolo GM (eds). Iowa, Blackwell Publishing, 2010, pp 3-33.
Medrano M, Perez PF, Abraham AG. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. Int J Food Microbiol. 2008; 122: 1-7.
Micheli L, Ucelletti D, Palleschi C, Crescenzi V. Isolation and characterization of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Appl Microbiol Biotechnol. 1999; 53: 69-74.
Mitsuoka T. Intestinal flora and aging. Nutr Rev. 1992; 50: 438-46.
Mozzi F, Vaningelgem, Hebert EM, Van der Meulen R, Moreno MRF, Font de Valdez G, De Vuyst L. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl Environ Microbiol. 2006; 72: 4431-35.
Nagai T, Makino S, Ikegami S, Itoh H, Yamada H. Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1 and its exopoly-saccharides against influenza virus infection in mice. Int Immunopharmacol. 2011; 11: 2246-50.
Navarini L, Abatangelo A, Bertocchi C, Conti E, Bosco M, Picotti F. Isolation and characterization of the exopoly-saccharide produced by Streptococcus thermophilus Sfi 20. Int J Biol Macromol. 2001; 28: 219-26.
Nichols CM, Lardiere SG, Bowman JP, Nichols PD, Gibson JAE, Guezennec J. Chemical characterization of exopoly-saccharides from Antarctic marine bacteria. Microb Ecol. 2005; 49: 578-89.
Nishimura-Uemura J, Kitazawa H, Kawai Y, Itoh T, Oda M, Saito T. Functional alternation of murine macrophage stimulated with extracellular polysaccharides from Lacto-bacillus delbrueckii ssp. bulgaricus OLL1073R-1. Food Microbiol. 2003; 20: 267-73.
Oh MH, Lee SG, Paik S. Antiviral activity of Lactobacillus spp. and polysaccharide. J Bacteriol Virol. 2010; l40: 145-50.
Oliver AE, Leprince O, Wolkers WF, Hincha DK, Heyer AG, Crowe JH. Non-disaccharide-based mechanisms of protection during drying. Cryobiol. 2001; 43: 151-67.
Orr D, Zheng W, Campbell BS, McDougall BM, Seviour RJ. Culture conditions affect the chemical composition of the exopolysaccharide synthesized by the fungus Aureobasidium pullulans. J Appl Microbiol. 2009; 107: 691-98.
Otero A, Vincenzini M. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol. 2003; 102: 143-52.
Park CW, Youn MS, Jung YM, Kim HI, Jeong YH, Lee HK, Kim HO, Lee IS, Lee SW, Kang KH, Park YH. New functional probiotic Lactobacillus sakei Probio 65 alleviates atopic symptoms in the mouse. J Med Food. 2008; 11: 405-12.
Park SB, Im M, Lee Y, Lee JH, Lim JH, Park YH. Effect of emollients containing vegetable-derived Lactobacillus in the treatment of atopic dermatitis symptoms: Split-body clinical trial. Ann Dermatol. 2014; 26: 150-55.
Park YH. Selection of a potential probiotics Lactobacillus strain and subsequent in vivo studies. Anton van Leeuwen. 2001; 80: 193-99.
Park YH, Baek IK, Kim KB, Kim CH, Woo KC. Effects of supplementary multiple probiotics or single probiotics on the performance, intestinal microflora, immune response of laying hens and broilers. Korean J Poultry Sci. 2010; 37: 51-62.
Patel AK, Michaud A, Singhania RR, Soccol CR, Pandey A. Polysaccharides from probiotics as food additives. Food Technol Biotechnol. 2010; 48: 451-63.
Patel A, Prajapati JB. Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res. 2013; 1: 1-7.
Patel S, Majumder A, Goyal A. Potentials of exopolysaccha-rides from lactic acid bacteria. Ind J Microbiol. 2012; 52: 3-12.
Peant B, LaPointe G, Gilbert C, Atlan D, Ward P, Roy D. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiol. 2005; 151: 1839-51.
Rather IA, Seo BJ, Kumar VJR,Choi UH, Choi KH, Lim JH, Park YH. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Lett Appl Microbiol. 2013; 57: 69-76.
Rather IA, Seo BJ, Kumar VJR, Choi UH, Choi KH, Lim JH, Park YH. Biopreservative potential of Lactobacillus plantarum YML007 and efficacy as a replacement for chemical preservatives in animal feed. Food Sci Biotechnol. 2014; 23: 195-200.
Rehm BHA. Bacterial polymers: Biosynthesis, modifications and applications. Nat RevMicrobiol. 2010; 8: 578-92.
Remminghorst U, Rehm BHA. Microbial production of alginate: Biosynthesis and applications. In: Microbial production of biopolymers and polymer precursors. Norfolk, Caister Academic Press, 2009, pp 13-42.
Rhee SK, Song KB, Kim CH, Park BS, Jang EK, Jang KH. Levan. Levan. In: Biopolymers. Steinbu¨chel A, Baets SD, Vandamme EH (eds.). Weinheim, Wiley VCH, 2002, pp 351-78.
Ricciardi A, Clementi F. Exopolysaccharides from lactic acid bacteria: Structure, production and technological applications. Ital J food Sci.2000; 1:23-45.
Roberts IS. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol. 1996; 50: 285-315.
Robijin GW, Vanden Berg DJC, Haas H, Kamerling JP, Vilegenthart JFG. Determination of the structure of the exopolysaccharide produced by Lactobacillus sake 0-1. Carbohyd Res. 1995; 276: 117-136.
Ruas-Madiedo P, Tuinier R, Kanning M, Zoon P. Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int Dairy J. 2002;12:689-695.
Sanchez JI, Martınez B, Guillen R, Jimenez-Daz R, Rodrıguez A. Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Appl Environ Microbiol.2006;72:7495-7502.
Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. J Gastroenterol.2004; 126:1620-1633.
Savadogo A, Ouattara CAT, Savadogo PD, Barro N, Ouattara AS, Traore AS. Identification of exopolysaccharides-producing lactic acid bacteria from Burkina Faso fermented milk samples. Afr J Biotechnol.2004;3:189-194.
Seesuriyachan P, Kuntiya A, Hanmoungjai P, Techapun C. Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: The effect of peptone, yeast extract and beef extract. Songklanakarin J Sci Technol. 2011; 33: 379-87.
Seo BJ, Mun MR, Kumar VJR, Kim CJ, Lee IS, Chang YH, Park YH. Bile tolerant Lactobacillus reuteri isolated from pig feces inhibits enteric bacterial pathogens and porcine rotavirus. Vet Res Commun. 2010; 34: 323-33.
Seo BJ, Rather IA, Kumar VJR, Choi UH, Moon MR, Lim JH, Park YH. Evaluation of Lecuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens. J Appl Microbiol. 2012; 113: 163-71.
Seo WT, Kahng GG, Nam SH, Choi SD, Suh HH, Kim SW, Park YH. Isolation and characterization of a novel exopolysaccharide-producing Paenibacillus sp. WN9 KCTC 8951P. J Microbiol Biotechnol. 2001; 9: 820-25.
Sims IM, Frese SA, Walter J, Loach D, Wilson M, Appleyard K, Eason J, Livingston M, Baird M, Cook G, Tannock GW. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. The ISME J. 2011; 5: 1115-24.
Stingele F, Neeser JR, Mollet B.Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophiles Sfi6. J Bacteriol. 1996; 178: 1680-90.
Tallon R, Bressollier P, Urdaci MC. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res Microbiol. 2003; 154: 705-12.
Tieking M, Ganzle MG. Exopolysaccharides from cereal associated lactobacilli. Trends Food Sci Technol. 2005; 80: 1679-84.
Tieking M, Kaditzky S, Valcheva R, Korakli M, Vogel RF, Ganzle MG. Extracellular homopolysaccharides and oligo-saccharides from intestinal lactobacilli. J Appl Microbiol. 2005; 99: 692-702.
Tsuda H, Miyamoto T.Production of exopolysaccharide by Lactobacillus plantarum and the prebiotic activity of the exopolysaccharide. Food Sci Technol Res. 2010; 16: 87-92.
Uchida K. Nyuusannkinn no kouzou to kinntaiseibunn. In: Nyuusannkinn kennkyuu syuudannkai, (Eds). Nyuusannkinn no kagaku to gijutsu. Tokyo, Gakkai Syuppann Center, 1996, pp 59-88 (In Japanese).
Van Casteren, MR. (Ed.)Book of Abstracts: First International Symposium on Lactic Acid Bacteria. 1sted: Brussels2001.
van Casteren WHM, de Waard P, Dijkema C, Schols HA, Voragen AGJ.Structural characterisation and enzymatic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891. Carbohyd Res.2000;327:411-22.
Van der Meulen R, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M, De Vuyst L.Screening of lactic acid bacteria isolated from dairy and cereal products for exopolysaccharide production and genes involved. Int J Food Microbiol.2007;118:250-258.
Van Hijum SAFT, Szalowska E, van der Maarel MJEC, Dijkhuizen L. Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiol. 2004; 150: 621-30.
van Kranenburg R, Boels IC, Kleerebezem M, de Vos WM. Genetics and engineering of microbial exopolysaccharides for food: Approaches for the production of existing and novel polysaccharides. Curr Opin Biotechnol. 1999; 10: 498-504.
van Kranenburg R, Marugg JD, van Swam II, Willem NJ, de Vos WM. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol. 1997; 24: 387-97.
Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC. The use of polysaccharides to target drugs to the colon. Carbohydr Polym. 2002; 48: 219-31.
Vijayendra SVN, Babu SRS. Optimization of a new hetero-polysaccharide production by a native isolate of Leuconostoc sp. CFR-2181. Lett Appl Microbiol. 2008; 46: 643-48.
Vincent SJF, Zwahlen C. Dipole-dipole cross-correlation at 13C natural abundance: A structural tool for polysaccharides. J Am Chem Soc. 2000; 122: 8307-08.
Vinderola G, Perdigon G, Duarte J, Famworth E, Matar C. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 2006; 36: 254-60.
Viver E, Tomasllo E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol. 2008; 9: 503-10.
Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puhler A. The genome of Xanthomonas campestrispv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol. 2008; 20: 33-45.
Waki N, Yajima N, Suganuma H, Buddle BM, Luo D, Heiser A, Zheng T. Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection. Lett Appl Microbiol. 2013; 58: 87-93.
Welman AD, Maddox IS. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 2003; 1: 269-74.
Williams DL, Pretus HA, Browder IW. Application of aqueous gel permeation chromatography with in-line multi-angle laser light scattering and differential viscometry detectors for the characterization of natural product carbohydrate pharmaceuticals. J Liq Chromatogr. 1992; 15: 2297-309.
Woolfson AD, Malcolm RK, Gallagher R. Drug delivery by the intravaginal route. Crit Rev Ther Drug Carrier Syst. 2000; 17: 509-55.
Wouters JTM, Ayad EHE, Hugenholtz J, Smit G. Microbes from raw milk for fermented dairy products. Int Dairy J.2002; 12: 91-109.
Yadav V, Prappulla SG, Jha A, Poonia A. A novel exopoly-saccharide from probiotic Lactobacillus fermentum CFR 2195: Production, purification and characterization. Biotechnol Bioinf Bioeng. 2011; 1: 415-21.
Yamamoto Y, Nunome T, Yamauchi R, Kato K, Sone Y.Structure of an exocellular polysaccharide of Lactobacillus helveticus TN-4, a spontaneous mutant strain of Lactobacillus helveticus TY1-2.Carbohyd Res.1995; 275:319-332.
Yun JW. Fructooligosaccharides: Occurrence, preparation, and application. Enz Microb Technol. 1996; 19: 107-17.
Zajšek K, Goršek A, Kolar M. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains. Food Chem. 2013; 139: 970-77